The inviscid limit for density-dependent incompressible fluids

نویسنده

  • Raphaël Danchin
چکیده

— This paper is devoted to the study of smooth flows of density-dependent fluids in RN or in the torus TN . We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework. Existence and uniqueness is stated on a time interval independent of the viscosity μ when μ goes to 0. A blow-up criterion involving the norm of vorticity in L1(0, T ;L∞) is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval [0, T0], then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on [0, T0]. The viscous solution tends to the Euler solution when the viscosity μ goes to 0. The rate of convergence in L2 is of order μ. An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake. RÉSUMÉ. — Cet article est consacré à l’étude des fluides incompressibles à densité variable dans RN ou TN . On cherche à généraliser plusieurs résultats classiques pour les équations d’Euler et de Navier-Stokes incompressibles. On établit un résultat d’existence et d’unicité sur un intervalle de temps indépendant de la viscosité μ du fluide ainsi qu’un critère d’explosion faisant intervenir la norme du tourbillon dans L1(0, T ;L∞). On montre en outre que si les équations d’Euler ont une solution régulière sur un intervalle de temps [0, T0] donné alors les équations de Navier-Stokes avec mêmes données et petite viscosité ont une solution régulière sur le même intervalle de temps. De plus la solution visqueuse tend vers la solution d’Euler quand la viscosité tend vers 0. Le taux de convergence dans L2 est de l’ordre de μ. En appendice, on démontre des estimations a priori de type elliptique dans des espaces de Sobolev à indice positif ou négatif. (∗) Reçu le 6 décembre 2004, accepté le 17 octobre 2005 (1) Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous and viscous-inviscid) at different Atwood numbers, At, and, when ...

متن کامل

Inviscid incompressible limits of strongly stratified fluids

We consider the motion of a compressible viscous fluid in the asymptotic regime of low Mach and high Reynolds numbers under strong stratification imposed by a conservative external force. Assuming a bi-dimensional character of the flow, we identify the limit system represented by the so-called lake equation the Euler system supplemented by an anelastic type constraint imposed by the limit densi...

متن کامل

Examples of singular limits in hydrodynamics

This chapter is devoted to the study of some asymptotic problems in hydrodynamics. In particular, we will review results about the inviscid limit, the compressible-incompressible limit, the study of rotating fluids at high frequency, the hydrodynamic limit of the Boltzmann equation as well as some homogenization problems in fluid mechanics.

متن کامل

The Poincaré Recurrence Problem of Inviscid Incompressible Fluids

Nadirashvili presented a beautiful example showing that the Poincaré recurrence does not occur near a particular solution to the 2D Euler equation of inviscid incompressible fluids. Unfortunately, Nadirashvili’s setup of the phase space is not appropriate, and details of the proof are missing. This note fixes that.

متن کامل

On the one fluid limit for vortex sheets

Abstract We consider the interface problem between two incompressible and inviscid fluids with constant densities in the presence of surface tension. Following the geometric approach of [14, 15] we show that solutions to this problem converge to solutions of the free–boundary Euler equations in vacuum as one of the densities goes to zero.

متن کامل

Interfacial waves due to a singularity in a system of two semi-infinite fluids

The three-dimensional interfacial waves due to a fundamental singularity steadily moving in a system of two semi-infinite immiscible fluids of different densities are investigated analytically. The two fluids are assumed to be incompressible and homogenous. There are three systems to be considered: one with two inviscid fluids, one with an upper viscous and a lower inviscid fluid, and one with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006